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A SURVEY OF SYMPLECTIC AND COLLOCATION INTEGRATION
METHODS FOR ORBIT PROPAGATION

Brandon A. Jones; and Rodney L. Anderson’

Demands on numerical integration algorithms for astrodynamics applications continue to in-
crease. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of
most scenarios, but more specialized scenarios require new techniques to meet both com-
putational efficiency and accuracy needs. This paper provides an extensive survey on the
application of symplectic and collocation methods to astrodynamics. Both of these methods
benefit from relatively recent theoretical developments, which improve their applicability to
artificial satellite orbit propagation. This paper also details their implementation, with several
tests demonstrating their advantages and disadvantages.

INTRODUCTION

Demands for orbit propagation capabilities continue to increase. The US Air Force requires efficient and
accurate propagation of a large number of space objects to assess the risks of satellite collisions. Numerical
integrators typically employed for orbital mechanics fail to meet stability requirements when propagating
through reentry. The common integration techniques also yield stability, accuracy, and computation issues
when propagating for long periods of time, especially given that current research attempts to include effects
in the coupling of the translational dynamics and rotational dynamics in long-term simulations.!? Long-term
integrations are also required for certain interplanetary trajectory applications as well as planetary protec-
tion. These requirements stretch the limits of computational efficiency and accuracy, as well as extend the
application of numerical propagation to new problems (e.g. low-thrust trajectories and propagation of proba-
bility density functions). Recent research focuses on techniques for reducing the evaluation time of the force
model.>#3° Instead, this paper considers the application of different integration methods for astrodynamics
applications.

Common methods of orbit propagation rely on techniques largely developed over 30 years ago. The com-
mon Runge-Kutta methods date back to the turn of the 20th century.”-8 These methods benefit from extensive
research, with later developments allowing for the implementation of variational step sizes via embedded
schemes and higher-order methods.® %! We note that all of these Runge-Kutta methods use an explicit for-
mulation, since calculations using implicit methods were deemed too computationally intensive at the time.
Current special perturbation propagation of the AF space object catalog relies on the Gauss-Jackson integra-
tor first presented in 1924.'213 These classical techniques provide an excellent method for solving the initial
value problem in traditional astrodynamics applications, but modern requirements demonstrate a need for
updated methods.

Among the most recently developed integration techniques, the most promising appear to be those that
are symplectic and/or use collocation. Pioneering works in symplectic integration first surfaced in 1956,'*
but began to mature with research published in the 1980s.'>!6 Unlike the previously mentioned classical
methods, symplectic methods preserve the Hamiltonian, which should remain constant for conservative sys-
tems. Previous research demonstrates the use of these methods in celestial mechanics when using symplectic
maps,!” 1819 with more recent references providing more detailed treatments of numerical integration theory
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(see, e.g. Reference 20). Symplectic integrators tend to reduce integration error due to truncation, allowing
for large time steps. Collocation methods also provide a potential method for trajectory propagation. Some
implicit Runge-Kutta methods may also be characterized as a collocation method, and exhibit stability prop-
erties not available with the classic algorithms. With these stability characteristics, the same integrator may
potentially be used for scenarios that require the integration through periods where the equations of motion
transition between between non-stiff and stiff differential equations.

This paper summarizes several of these integration methods through the lens of propagation in astrody-
namics. This includes a combination of a literature survey of current and previous uses in astrodynamics, and
presents several examples to demonstrate properties of these algorithms. The presentation of these algorithms
includes implementation details allowing members of the astrodynamics community to easily implement
these methods in their own software.

OVERVIEW OF HAMILTONIAN DYNAMICS

In this section, we present a basic overview of Hamiltonian dynamics, which serves as a basis for future
discussion. We note that a more comprehensive discussion of the Hamiltonian forms of the governing equa-
tions of celestial mechanics may be found in, for example, Reference 21 or Reference 22. In general, the
Hamiltonian H may be given by H = H (p, q,t) where q is called the position vector and p is called the
momentum vector. The differential equations are defined by
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where ¢ = 1...n and p,q € R™. Alternatively these equations may be written more compactly as
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where 0 and I are the n X n zero and identity matrices, respectively. J is the 2n X 2n nonsingular, skew-
symmetric structure matrix.

For Kepler’s problem, we may express the Hamiltonian in the separated form

H(q,p) = T(p)+V(q) 3)
p’p
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i.e. the sum of the kinetic and potential energies, and p; = ¢;. We note that Eq. 4 is quadratic in the momentum
variables, and, since [ is independent of time, the system is autonomous. We note that most presentations of
Hamiltonian mechanics employ notation based on such systems independent of time. However, formulations
may easily be extended to non-autonomous systems.”*>> When including temporal variations in H, e.g. V =
V(q,t), Eq. 3 does not remain constant. Thus, we augment the equations with a new coordinate variable ¢.

This yields the new system
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where H remains constant. Unless we wish to quantify the behavior of H over time, we are not required to
solve for e when generating a solution based on numerical techniques.

INITIAL VALUE PROBLEM

In its simplest form, a solution to the initial value problem (IVP) is a state y,, 1, at some time ¢,,4; that
results from the ordinary differential equation

y=fty). ©)
and satisfies an initial condition
The function f(t,y) is often referred to as the right-hand-side (RHS) function. In cases where no analytic
solution to Eq. 9 exists, which is the case for all orbit propagation cases other than the two-body problem,
numerical methods must be employed to generate an approximate solution. These numerical methods come
in several forms, including: mapping, single-step, multistep, and extrapolation techniques. Sometimes, the
distinctions between these methods weaken based on various implementations. This paper mainly considers
single-step numerical integration methods with a limited treatment of multistep methods.

For the case where we seek to generate only a position solution, we may rewrite Eq. 9 as the second-order
ODE
§=fty.9). (1)
For these cases, a second-order integration method may be employed to directly solve for the position. Many
cases in astrodynamics use a RHS form with no dependence on velocity, i.e. are separable. Example scenarios
where the RHS function depends on velocity are: low-altitude orbits that include atmospheric drag, or the
circular restricted three-body problem. Separable cases allow for some simplifications in the IVP solution
method, which we discuss later.

Important Properties of Numerical Integrators

In this section, we discuss several properties of numerical integration techniques with various benefits to
astrodynamics. We note that the more general subject of geometric integration encompasses both symmet-
ric and symplectic methods, but both properties must not be satisfied to qualify as a geometric integration
method.

Stability The stability of a numerical integration method refers to the dependence of error on integration
step size h. For example, numerical integration of a system of stiff equations (e.g. satellite reentry) using a
method with insufficient stability requires a step size smaller than the evolution of the dynamics. This effect
results solely from the integrator and leads to inefficiencies in the propagation. For the system

fy)=xy, t=0, y(0)=1 (12)
where A € C and Re(\) < 0, A-stability, sometimes referred to as linear stability, implies
limy, =0, Vh>0. (13)

Thus, for linear systems, step size selection only depends on desired accuracy.”* However, we note that a lack
of A-stability does not imply a solver is unsuited for all applications, but the property signifies an increased
versatility of the given algorithm. L-stability?® implies further improvements on the rate of decay match-
ing the modes of the approximated system, while B-stability’® extends the A-stability criteria to nonlinear
systems.

Symmetric A symmetric method preserves the time-reversibly properties of many dynamics problems.
Given two sequential propagations ¢y, : ¥ — Yn+1 and ¢_p : Yn+1 — y.,, a non-symmetric method does
not guarantee y,, = ¥/, (ignoring rounding error). Given the possible combination of backwards and forwards
propagation in time for satellite propagation, a symmetric integrator allows for a more accurate propagation
tool. This property of an integration method may often be determined through inspection, e.g. a symmetric
distribution of Runge-Kutta nodes in a given time step.?’



Symplectic A flow map ¢,y : R*® — R?" of the Hamiltonian system H is symplectic if

(br.5]” Tpr = J, (14)

i.e. the Hamiltonian structure is preserved. Such methods, called symplectic integrators, are discussed later,
but in brief, they are known to preserve the symplecticness relation from one time step to the next. Such meth-
ods preserve the first integral of the Hamiltonian system [, but at the expense of knowledge of the state at a
specific instance in time. Thus, such methods yield a qualitatively correct description of the solution.”? We
provide an example that demonstrates this property later in the paper. References 23 and 20 provide a detailed
explanation of these types of integrators and their relationship to the more general geometric integrators.

Overview of Common Integration Methods

In this section, we provide a brief overview of the two classes of integration methods most commonly
employed in astrodynamics. These descriptions also set the stage for the introduction of the collocation and
symplectic methods in the following sections. We note that comparisons between these common methods
may already be found in the literature >’-282%:30

Runge-Kutta (RK) Methods Independently developed by Carl Runge’ and Wilhelm Kutta,® the ubiquitous
Runge-Kutta (RK) methods provide a single-step method for solving the IVP. In a generalized form, an s-
stage RK method may be written as

ki = f|tatheiyn+h> agk;|, i=1...s (15)
j=1
Yni1 = Yn+hY bik;. (16)
j=1

The coefficients are often expressed in terms of the Butcher table
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where the integration (or Runge-Kutta) matrix A is comprised of the terms a;;, and the vectors ¢ and b include
the ¢; and b; coefficients, respectively. RK methods are often classified by their order p and the number of
stages s. Efficient methods minimize s for a given order p. When a;; = 0 for j > 1, this yields an explicit
method in which each of the k; terms may be determined sequentially. When this is not the case, i.e. we
have an implicit Runge-Kutta (IRK) scheme, we use nonlinear solvers to generate k;. Most methods of
RK-based orbit propagation use explicit schemes, which are easier to implement and benefit from decades of
development. Unfortunately, the commonly used methods fail to utilize the multi-core processing capabilities
of modern computers in the sense that evaluations of the RHS function cannot be computed in parallel. While
concepts exist to define an explicit RK scheme that allows for the parallel computation of the s stages, such
methods result in a reduced accuracy without increasing s.’!

Embedded RK methods allow for autonomous determination of the step size based on maintaining a max-
imum local truncation error.>!%!! These methods add a minimal number of additional stages to generate a
solution of higher (or lower) order. A comparison of these two solutions yields an estimate of the local trun-
cation error, which may be used to calculate a new step size h. Such variable-step methods provide valuable
computational savings for scenarios with large variations in the RHS function, and reduce the overall number
of RHS evaluations.?® The order of such methods is often written as X (Y') where X is the order of the output
solution and the Y -th order solution is used for step size control.

For this paper, we compare the collocation and symplectic methods (described later) to two embedded RK
solvers: DOPRI 5(4)' and DOPRI 8(7).!' The 7-stage DOPRI 5(4) method also serves as the integration



scheme for MATLAB’s ode45 () .32 For our tests, we use the DOPRI 5(4) solver provided in the CU-
TurboProp propagation package.* All TurboProp integration routines utilize a common library of RHS
functions, are implemented in C, and include interfaces with both Python and MATLAB. Inspection of the
DOPRI 5(4) integration scheme demonstrates that the extra k7 used to generate the fourth-order solution
equals kg for the next step. Thus, we use a first-same-as-last (FSAL) implementation to reduce the number of
RHS evaluations to six per step. TurboProp currently provides a high-order solver in the form of the 13-stage
RKF 7(8) algorithm.” However, this seventh-order method yields a larger truncation error when compared
to the 13-stage DOPRI 8(7).'>2 Hence, we add the DOPRI 8(7) integrator to TurboProp and use it as our
eighth-order embedded solver. We note that FSAL may not be used with this method.

As we discuss below, this paper considers IRK methods for orbit propagation. Such methods lend them-
selves to parallel implementation with good stability properties, but, like all parallel implementations, care
must be taken to select the proper method for a given hardware configuration, i.e. the number of available
processors.>! When using fixed-point (or Picard) iteration, each stage may be evaluated in parallel (see be-
low). Other opportunities for parallelization exist. For example, previous research sought to leverage off of
various properties of the integration matrix to perform evaluations of independent stages in parallel.>*3> We
do not provide any further discussion of these parallel methods in the current paper, but note their existence
to encourage future consideration for astrodynamics applications.

Linear Multistep Methods Linear multistep methods use elements of polynomial interpolation and extrap-
olation to generate a new solution y,+1. Unlike single-step tools, these methods use stored information from
previous steps to form the new solution. This increases software complexity, both in storing previous steps
and initialization of the algorithm, but multistep integrators typically provide faster propagation. Although
we use the common eighth-order Gauss Jackson integrator (GJ 8) for the generation of high-fidelity truth
orbits, we do not implement any new multistep methods in the current paper. We note that efforts to date
fail to generate a symplectic multistep integrator,3®:37-3% and any multistep methods of order greater than two
cannot be A-stable.®

An alternative to the GJ 8 is the DIVA propagator.*0:41:42.43.44.45 Tt hag been the primary integrator used at
JPL for navigation and mission design applications since the 1960s, and it is currently implemented in JPL’s
MONTE software.*® Comparisons to a variety of different algorithms have generally verified the utility of
DIVA for the integration of trajectories for astrodynamics applications.*”-3%4% The algorithm itself uses a
variable order, variable step size Adams method for solving ordinary differential equations that has been tai-
lored specifically for integrating trajectories. More details about the algorithm may be found in Reference 49.

Description of Collocation Methods

A collocation method for approximating the solution to an ODE uses elements of polynomial interpolation
where the first derivatives of the polynomial equal the slopes of the continuous solution y(¢) at a given set of

nodes ¢;. Given ¢; € [0, 1] where i = 1,..., s, a collocation polynomial solution satisfies
u(to) = o A7)
’[L(to + hCl) = y(to + he;, ’U,(to + hCl)) (18)

with the solution to the collocation method y; = u(ty + h). We note that the resulting polynomial w(t)
provides a continuous approximation of the system. Although several methods exist for using the collocation
method to generate a solution to the IVP, all collocation methods may be expressed as an IRK method.>°

Collocation methods benefit from a large body of research that began in the 1950s. Reference 51 discusses
a different interpretation of the common implicit trapezoidal rule, which generates a solution based on the
quadratic, shifted Legendre polynomial. These methods benefit from analytic definitions of the Butcher table
for any number of stages s, with such definitions based on various quadrature rules. These schemes are
commonly referred to as the Gauss-Legendre (GL) methods. A GL-IRK scheme using s stages yields a
solution of order p = 25.52 This results in a minimal number of nodes required to achieve a solution of order
p. Later characterization of these methods determined that they are symmetlric,20 A-stable,”® B-stable,¢



% Unfortunately, such stability properties may be lost with implementation,> and, when
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and symplectic.
compared to other symplectic integrators, the GL methods tend to be less efficien

Other collocation methods exist, each with properties that make them more or less beneficial than the GL
methods. The Radau IIA methods (see, e.g. Reference 20) include a stage at ¢, = 1, thus incorporating
information on the forces acting on the satellite at ¢,, ;. These methods provide a solution of order p =
25 — 1. The Radau IIA methods are A-, B-, and L-stable,’’ but are neither symplectic nor symmetric.?
The Lobatto IITA methods have stages at both of the end points, which allows for an FSAL implementation
to reduce the number of RHS function evaluations. These methods are of order p = 2s — 2, A-, B-, and
L-stable, but are not symplectic.

Although not prevalent at this time, application of collocation methods to orbit propagation and mission
design exist. Previous applications of the Lobatto IIIA methods include trajectory optimization for Earth-
Moon trajectories.’®> These same Lobatto IIIA methods were used for trajectory design for solar sail®*!
and low-thrust trajectories®> % in the N-body problem for Lunar pole coverage.

Chebyshev collocation methods have also gained recent momentum in astrodynamics. Reference 64
demonstrated the application of such methods to fast and accurate orbit propagation, which included tests
employing higher-degree gravity perturbations and atmospheric drag. These tests demonstrate more efficient
propagation than DOPRI 8(7). We also mention that the formulation of Chebyshev collocation presented
in Reference 64 allows for an adaptive order method. In Chapter 7 of Reference 65, the author provides a
detailed treatment of collocation methods for orbit propagation. The reference includes orbital motion tests
using polynomials defined by equally-spaced nodes, and a brief comparison with Chebyshev and Legendre
collocation methods in simpler problems. Those results demonstrate that Legendre collocation outperforms
Chebyshev collocation by about an order of magnitude in accuracy. However, these comparisons use poly-
nomials of equal degree without compensating for the order of the resulting integration method. More recent
research duplicates a similar Chebyshev method but demonstrates a parallel implementation to further reduce
overall CPU time.%
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Figure 1. Example spacing of collocation nodes.

In Figure 1, we illustrate the location of nodes c¢; for three of the collocation methods mentioned. For
these polynomials, we see an increase in concentration of ¢; towards the endpoints of the time interval. This
results in oversampling and high-frequency oscillations at the ends (Runge phenomenon), which reduces
the overall efficiency of the integration method for high order schemes. An alternative method for orbit
propagation reduces node density at the ends by using collocation with band-limited functions.®” This is
designed to sacrifice some accuracy for the sake of computation speed, symplecticity, improved stability, and
the implementation uses a specialized initialization process that combines evaluations of a high-fidelity and
a low-fidelity RHS function to reduce overall computation time.



Gauss-Legendre Collocation Implementation

In this section, we describe the implementation of a GL-IRK method. We develop our GL method within
the TurboProp framework, but note that MATLAB software designed for solutions expressed in a separated
representation may be found online*. In the interest of brevity, we do not provide the Butcher tables for these
methods. GL schemes for up to s = 5 may be found in the literature,’? or generated via Mathematica for all
sT. We also note that variable-step-size methods do exist when using the GL-IRK,%% but are not described
in this treatment.

The IRK methods require some form of iteration to solve the nonlinear system presented when solving
Eq. 15. To reduce roundoff error when generating the k; terms, we slightly change the formulation of the RK
algorithm. Instead, we solve

Z; = hzaijf(tn—Fth,yn—FZj) (19)
j=1
Yntl = Ynt Z d;Z;, (20)
j=1
where
df =bTAL, (21)

i.e. we generate the smaller quantities Z; in the nonlinear solver.>2%3 Eq. 20 prevents the s additional
evaluations of the RHS after converging on the final solution for Z;. Multiple techniques may be employed
for the iterative process, with Reference 20 providing an overview and comparison of the most common tools
based on fixed-point or Newton iteration. Although Newton iteration must be used to fully preserve stability
properties when integrating stiff equations,> the additional computation time required tends to reduce their
benefit for most situations.?? Thus, we only consider fixed-point iteration in the present paper. We outline the
method in Algorithm 1 for a scalar implementation, which may be easily altered for y,, a vector.

Algorithm 1 Fixed-Point Iteration

while max (ZF -~ ZF 1Y)y, > dand k < k,, do

for i:l,...,SdO
ZI = hY 3 ai f(tn + hej, yn + ZF)
end for
k=k+1
end while

To reduce the number of iterations for the implicit solver, a good initial solution Z{ must be generated.
Several methods exist: extrapolation using the collocation polynomial,?’ additional evaluations of the RHS
function in an explicit integration method,”® equistage approximation,’! or two-step, explicit methods.”>”?
Reference 20 compares the first three using Kepler’s equation, and demonstrates that the method requiring
additional evaluations yields a more accurate initial solution, and, thus, requires fewer iterations when used
in the fixed-point algorithm. We do not yet consider the two-step methods, but plan to do so with future tests.
For the current implementation, we use the explicit integration method requiring three additional evaluations
of the RHS. We note that this method requires the evaluation of f(¢,,—1,yn—1) and f(t,, yn), thus FSAL-like
methods may be employed to remove one evaluation per time step.

The initialization methods requiring additional function evaluations augment the IRK integration scheme
with additional explicit stages to provide a relatively high-order approximation with a minimal impact to run

*http://www.unige.ch/~hairer/software.html
TCommand: NDSolve ‘ImplicitRungeKuttaGaussCoefficients[p, D], where D is the number of significant digits to
display.



time. We present the method requiring two additional function evaluations, which provides a prediction with

accuracy of order s + 2.7* This yields the augmented Butcher table
0
c| O Asxs
1|0 "
n Mo Nj=1,..., s Ts+1

where the new coefficients 7);, the matrices v and (3, and the stages of the previous integration step combine
to form a new implicit integrator to solve for the stages Z; needed in the next step. We note that the j index in
v; ; refers to the j-th column of the sx 3 matrix, and this method also assumes a fixed h. Although the scheme
is implicit, new evaluations of the RHS functions only require an explicit solution. Values for the integration
schemes based on the GL methods with s = 2, 3, and 4 may be found in Reference 74, with analytic methods
for generating the table presented in the literature.’’ We provide the implementation details in Algorithm 2.

Algorithm 2 Iteration Initialization

if ¢, = to then
Z9 =0, i=1,...,8
else
Yo =yn—1
}/j:yn—l‘FZj jzl,...,s
Y5+1=yn

Yito =Yn-1+ hZle N2i f(tn—1 + hn;i, Y3)

Zy=h (ijl(ﬂzj — b)) f(tno1 + hej, Y5) + viof (tno1, Y0) + Yo 5—y Vi f (tn—1 + hmj, Yj))
end if

Collocation methods provide a continuous solution to the IVP, which we may use to interpolate between
time steps t,. Although we may use interpolation methods specific the collocation polynomial, we may
instead compute a set of coefficients 6(¢) for each output time that we use in

Y(t) =yn +h Y 0;(t)f (tn + hej,yn + Z;). (22)
j=1

The coefficients 6;(t) are generated by solving the Vandermonde-like system

11 1 01 (t) T
C1 C2 s Cs og(t) 7'2/2
) ) ) ) =1 . (23)
Ci_l Cg_l C::_l SXS os(t) sx1 TS/S sx1
with 5
=" 24
T W (24)

Assuming the Vandermonde matrix is non-singular (which is the case for the GL methods), we precompute
its inverse to define a polynomial in 7. This yields a general method applicable to all collocation methods
formulated as IRK. We note that such a method may be used for extrapolation (|7| > 1), which is also a
common method used to initialize the iteration procedure in the next time step. Such methods are often
employed in variable-step IRK solvers.>



Description of Symplectic Methods

Symplectic solutions of the IVP provide a numerical method for performing a canonical transformation
of a given dynamical system. These methods preserve the Hamiltonian flow, i.e. the the first integral of the
equations of motion. However, the algorithms tend to be more coupled with the underlying Hamiltonian
equations of the given system. We do not seek to provide a full survey of symplectic methods since several
may already be found in the literature’>7%77-78 Here, we describe some previous applications of these meth-
ods to orbital motion. We note that symplectic integration also applies to rigid body dynamics, but do not
provide any details on these equally useful applications?’-237%80.81

Symplectic integration methods already have a history of use in celestial mechanics. The most prominent
application of techniques demonstrates the long-term, chaotic evolution of the solar system for up to 1 billion
years.'”82 Researchers used similar methods to study the evolution of the distribution of Kuiper belt objects.®?
Other applications demonstrate the origin and evolution of the Kirkwood gaps in the asteroid belt between
Mars and Jupiter,'”'® and the long-term behavior of short-period comets.®* These previously mentioned
techniques use low-order methods with first-order averaging techniques. They assume the dynamics may be
separated into

o= erp + Hperl (25)

where H,, represents the Hamiltonian defined by Keplerian motion, and H . represents the Hamiltonian
due to small perturbations, e.g. third-body effects. Higher-order methods have also been suggested and
evaluated for celestial mechanics,?>3%%7 each with relative advantages and disadvantages. We also note that
Kepler’s equation is often used to demonstrate and verify a new integration method, including symplectic
integrators.38:75-8%.90.91.69 Thege applications imply a possible use for Earth-based scenarios.

Early comparisons of symplectic integrators with previously existing methods described their advantages
for many long-term scenarios, but mention a strong disadvantage in terms of the lack of step size adaptation.
For celestial mechanics, a lack of variable-step capabilities creates inefficiencies when propagating a system
with close encounters and large eccentricities.”>%3%+% Early tests of symplectic integrators demonstrate that
classical methods of step size control fail to preserve the Hamiltonian flow.%%°%9 Attempted solutions em-
ployed time step selection techniques based on ad hoc methods somewhat specific to a given problem.’*%
More recently, general methods were developed to provide variable-step capabilities in geometric integrators.
Early techniques used a Sundman transformation to create an adaptive time step by designating a transfor-
mation function based on the system dynamics.?”-%%%%-100.101 " Gych a transformation provides a symmetric
method, but, in general, is no longer symplectic.23 However, when combined with a Poincaré transformation,
the symplectic flow may be preserved and the methods meet the necessary requirements for adaptability in
Hamiltonian systems, 0% 103.69

Other recent studies seek to characterize and develop symplectic integration techniques more applicable
to Earth-based simulation of artificial satellites. The early tools developed for celestial mechanics make two
primary assumptions: (1) Hpey is small compared to Keplerian motion, and (2) all forces are conservative.
This raises the question: How suited are these methods to the more dynamic, non-conservative environment
of low-earth orbit? Assuming the proper formulation of the system, symplectic integration methods demon-
strate desired accuracy when gravity perturbations are included.'**1%> Although the Hamiltonian typically
describes a conservative system, dissipative terms may be added to formulate a system with non-conservative
forces, e.g. drag. Methods for including non-conservative forces in the Hamiltonian formulations, with the
caveat that such dissipative effects are relatively small, have been presented in the literature 2% 106.107.105,108
Including such effects improves the realism of the propagation and its versatility. Although some studies
exist demonstrating the use of symplectic integrators for Earth-centric orbits, ' 1% more research is required
before they may be adopted for qualitative studies of artificial satellites.

Stormer-Verlet Composition Implementation

We now describe the implementation of a symplectic integrator based on a combination of the Stormer-
Verlet scheme and the composition of symplectic maps. We note than MATLAB versions of this algorithm



may also be found online™, but we use a version in C written for TurboProp.

Upon expressing the dynamical system in Hamiltonian form using canonical coordinates g and p and
assuming that H is quadratic in p, the Stormer-Verlet scheme may be written as

h
Qn+1/2 = (Qn+ §pn (26)
Pn+1 = Pn— thH(an/z) (27)
h
dn+1 = QGn+1/2+ 5Pn+1 (28)

This method is explicit, symmetric, symplectic, and second order.?’ For a Hamiltonian not quadratic in p,
we substitute V, H(pj, ¢,11 /2) for p; in Egs. 26 and 28, and the method may be implicit. We note that, if
gn+1 1s not required, then Eqgs. 26 and 28 may be replaced with

Gni1/2 = Qn-1/2 + hpn. (29)

We use this later form during propagation when g,, is not output or for an intermediate stage in the composi-
tion method described below.

Composition methods use a collection of substeps based on a low-order symplectic map to generate a high-
order method. Like all splitting methods, such techniques reduce the differential equation into a collection of
simpler equations to integrate. The composition of these solutions then yields the solution of the total system.
An extensive survey of these splitting methods may be found in Reference 111. If the system Hamiltonian
may be expressed in a separated form similar to Eq. 3, then a composition of symplectic flows is also a
symplectic flow.?* Such a formulation applies in astrodynamics with the Hamiltonian expressed as the sum
of the kinetic and potential energy. High-order methods may then be developed using s-fold compositions

P H = Pwoh,H © Pw,_1h,H O O Dush,H © Puwih, Hs (30)

where > w; = 1 and @a; is a second-order, symmetric, and symplectic method, e.g., the Stérmer-Verlet
scheme.®> Assuming a proper selection of {w;}, it may be demonstrated that such compositions of a low-
order method generate a high-order approximation.!'! Thus, high-order integration only requires a Stérmer-
Verlet solver and the composition scheme {w;} to create a high-order symplectic integrator. In terms of
implementation, we simply chain together evaluations of the Stormer-Verlet scheme, each with step size w;h.
A table of example schemes may be found in Reference 23. Here, we use the eigth-order, 17 stage method of
Reference 112, which we refer to as SVC 8.

To minimize round-off error, and the loss of symplecticity due to numerical error, we must employ com-
pensated summation®*'13:114 (Algorithm 3) in the Stérmer-Verlet scheme. This method preserves digits from
the second term on the RHS for Egs. 26-29 which are lost with the addition operation. We note that some ag-
gresive compiler optimizers, e.g. the Intel C/C++ compiler, use associative properties to improve computation
speed at a slight cost to precision. When this is the case, it removes the benefits of compensated summation.
However, such optimizations can be disabled.

DEMONSTRATION OF METHODS

In this section, we demonstrate some of the capabilities of the GL and composition method. For these
cases, we use two principle orbits: (1) a nearly-circular low-Earth orbit (LEO), and (2) a Molniya orbit. The
LEO case has an initial semimajor axis altitude of 300 km, and eccentricity of 10~%, and an inclination of 45
deg. The Molniya case has a semimajor axis of 26,562 km, and eccentricity of 0.741, and an inclination of
63.4 deg. The eccentricity vector for both cases lies in the inertial X-Z plane in the positive X direction, and
the satellites initially start at periapsis.

*http://www.unige.ch/~hairer/software.html
tUse compile-time options for Intel C/C++ compiler: ~fp-model precise —fp-model source
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Algorithm 3 Compensated Summation

Require: yg, {0,,},ande =0

forn=0,...,n,, do
a=1yp
e=¢€+ 0,

Yn+1 = X+ €
e=e+ (@ —Yns1)
end for

Baseline

In this section, we present results from several baseline tests used to illustrate the relative performance
of the classical integration methods employed in future sections. For this test, we duplicate tests previously
used in the literature,”® and extend the test to a higher-fidelity propagation using the test orbits previously
described.

In Fig. 2, we duplicate the D1 and D5 tests described in Reference 28, but instead use the DOPRI 9(7),
DOPRI 5(4), RKF 7(8) and DIVA propagators available for this paper. We note that the D1 and D5 tests
simulate two-body orbits with an eccentricity of 0.1 and 0.9, respectively. Initial conditions use normalized
coordinate systems, and quantify precision by the global integration error, i.e. the error at the final time. These
orbits are propagated for 20 time units, or approximately 3 orbit periods. The results for the D1 case match
those presented in Reference 28 to within variations due to the selected time step determination algorithm.
As expected, the multistep, variable-order, variable-stepsize DIVA propagator outperforms the embedded RK
methods.

3500
2
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O 2500
c
G 2000
E 1500
5 1000
'™

10000,

8000

6000

4000

Function Calls

2000= 22

8 10
Global Error (in digits)
[-:- DOPRI5(4) — DOPRI8(7) -- RKF7(8) DIVA|

Figure 2. Work-Precision Plots Duplicating the Tests from Reference 28

References 28 and 30 compare many of the Runge-Kutta and multistep methods commonly used in orbit
propagation. However, those tests use the two-body problem for various eccentricities with truth defined by
Kepler’s equation. For the current paper, some tests use higher fidelity dynamics. We perform this test with
the DOPRI 8(7), DOPRI 5(4), and GJ 8 methods. Unfortunately, making the necessary changes to DIVA to
ensure equivalent force models was not feasible in time for this comparison.

For the higher-fidelity tests, we add the most commonly used special perturbations to the force model.
We use the GGMO02C!'> model up to degree 70 for gravity perturbations, an exponential atmospheric density
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model,''® Moon and Sun third-body perturbations with ephemerides determined using the 2006 Astronomical
Almanac approximation,'!” and a constant area-to-mass ratio of 0.01 m?/kg. We test using both the LEO and
Molniya cases. We propagate these orbits for two days in all three of the methods mentioned previously, with
states output every 100 s. We use a GJ 8 propagation with a step size of one second as the reference solution,
which we chose since previous studies demonstrate the improved accuracy of multistep methods compared
to explicit Runge-Kutta.?® For the fixed-step methods, we vary the step size h to achieve a given accuracy,
and vary the relative tolerance in the variable-step integrators to achieve similar accuracy.
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Figure 3. Work-Precision Plots for the Embedded RK Methods for the LEO (top)
and Molniya (bottom) cases.

Figure 3 provides the work-precision diagram for the three integration methods. For the LEO case, the GJ
8 performs better than the RK methods, which is expected. In the Molniya case, the oversampling at apoapsis
for the GJ 8 propagator increases the work required for the propagation. The maximum precision exhibited
by the RK methods matches the limit exhibited in previous studies for the two-body tests.?®

Collocation Capabilities

In this section, we profile some advantages of the GL-IRK methods in comparison with the explicit RK
methods. We consider GL methods of fourth, sixth, and eighth order for this test. Again, we use the GJ 8,
one-second solution as the reference. As mentioned previously, we use a parallel implementation of the RHS
function evaluations when iterating. Thus, we compare both the number of RHS evaluations and the total
computation time required for the two-day propagation.

When comparing software runtimes, it is important to define the hardware and software tools used. Except
for the GJ 8 integrator, all of these tools are implemented in the TurboProp framework based on the C
language. We use the Intel C/C++ compiler with —O3 optimization. We note that we disable optimization
based on associative properties (see discussion of compensated summation). The GJ 8 software available for
this study was implemented in Fortran 90/95 with the Intel ifort compiler. Given the difference in languages
and compilers, we do not compare the GJ 8 runtimes to the other routines. We run these tests on a dedicated
running RedHat Enterprise 5 Linux on a Dual Intel quad-core 2 GHz chipset, which allows up to eight parallel
processes.

Figure 4 compares the GL methods to the embedded Runge-Kutta methods for the LEO orbit. In terms
of function calls, the iteration results in more RHS evaluations than the embedded methods. However, we
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Figure 4. LEO Work-Precision and Execution Time-Precision Plots for the Collocation Methods

see a computation time reduction with the parallel, higher-order GL-IRK methods. In fact, we see that a
sixth-order GL-IRK outperforms the eighth-order DOPRI 8(7).

105 =
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Figure 5. Molniya Work-Precision and Execution Time-Precision Plots for the Collocation Methods

We provide results for the Molniya case in Figure 5. The highly-eccentric orbit reduces the efficiency of
the fixed-step methods, thus yielding results where the embedded techniques require less computation time
and RHS evaluations. For a more valid comparison, we must implement a variable-step implementation of
the IRK methods,®®% which we plan to pursue for future tests.
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Symplectic Capabilities

To demonstrate the capabilities of symplectic integration, we perform a 25-year propagation of a 300 km
altitude, nearly circular orbit about the Earth. For this case, we use the LEO test case. We perform this test
with both the SVC 8 and DOPRI 8(7) methods. For the DOPRI 8(7) algorithm, we use a relative tolerance
of 1071, and select a time step of 500 s for the SVC 8 method. We compare the results to the true results of
Kepler’s equation.
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Figure 6. Features of a 25-Year Propagation of a LEO Satellite

In Fig. 6, we provide some of the key features of the propagations, including the change in the Hamiltonian
H, the root-sum-square position error, and the error in true anomaly v of the orbit for both integrators. We
see that the integration constant does oscillate for the SVC 8 case, but such variations are uniformly bounded
with an amplitude less than the change in H in the DOPRI 8(7) results. The execution time required for the
integration is also 180 times faster than the DOPRI 8(7) execution time. However, we see the accuracy of the
SVC 8 method degrades over time. The propagator exhibits a linear growth in phase error, which we see in
the value of true anomaly.
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Figure 7. Phase Space Plots of SVC-8-Determined State (green dots) and Truth (black line)
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In Fig 7, we plot the SVC 8 solution in phase space, along with the truth defined by Kepler’s equation.
For this plot, we only include the SVC 8 solution for every 115.75 days. This result demonstrates that the
symplectic integrator preserves the phase space solution over the full 25 year span. As indicated by the error
in true anomaly in Fig. 6(a), position error results from a difference in the phase. This result is commensurate
with the analysis of Reference 118, which determined that a phase offset occurs as a function of the number
of steps per period.

PROSPECTS

In this paper, we summarized some applications of collocation and symplectic methods to astrodynamics.
This included a description of applicable developments in these integration techniques and a survey of their
application in astrodynamics. This paper represents the results of initial efforts to provide a comprehensive
survey of the application of new integration techniques to astrodynamics, with a final goal of identifying pos-
sible applications for the propagation of artificial satellites both for Earth orbit and interplanetary trajectories.
Based on the current maturity of their applications to orbit propagation and mission design, collocation meth-
ods may immediately be applied to rapid orbit propagation. However, some work is still required to further
classify which methods best meet the requirements of astrodynamics, e.g. the largest reduction in computa-
tion time, use for propagating through re-entry, etc. Symplectic methods still require further development,
although initial efforts demonstrate potential for their application.

This paper also described key features for the implementation and application of implicit Runge-Kutta and
symplectic integrators. We presented elements required for the implementation of the Gauss-Legendre col-
location methods, specifically the algorithms required for developing software that uses the implicit Runge-
Kutta definition of these methods. For the symplectic integrators, we described the implementation of the
second-order Stormer-Verlet method, and a high-order propagation method using the composition of the
lower-order method. Examples demonstrate the reduced computation time found with a parallel implemen-
tation of the Guass-Legendre methods, with results motivating future exploration of such implicit techniques
already developed for parallel computation. The higher-order, symplectic propagation test demonstrated the
qualitative benefits of such methods for long-term propagation, albeit at the expense of accuracy at a discrete
point in time. Such methods may be used for certain types of analyses, e.g. estimating the change in general
properties of an orbit over very long time spans.
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NOTATION

A matrix of a; ; coefficients, often called the Runge-Kutta integration matrix
a;j,bj,c; Runge-Kutta integration scheme
d; scaled Runge-Kutta scheme coefficients
e time momenta
y) ordinary differential equation function
H  Hamiltonian
h  step size
I  Identity matrix
,k dummy indices
Z; intermediate Runge-Kutta stage variables
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J  Hamiltonian structure matrix
P, p; canonical momenta
q, q; canonical coordinates
s number of Runge-Kutta stages
T(p) Kinetic energy
t time
(t) collocation polynomial
q) Potential energy
Y  state variable
z canonical state vector
o stored value
0 change in variable
€ summation compensation term
,8 iteration initialization integration scheme matrices
6(t) collocation interpolation coefficient
A scale parameter
[ gravitation parameter

On,i, Py, m flow maps

7 scaled time
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